Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 577: 116-123, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34509723

RESUMO

The zona pellucida (ZP) plays an important role in both the fertilization and embryonic development. For the successful handling of early stage blastomeres for differentiation analysis, the production of identical twins or quadruplets, nuclear transfer or gene introduction requires the removal of the ZP (ZPR). Although single use of either acidic Tyrode's solution or pronase are commonly used for ZPR, long-term exposure to these agents can result in the inhibition of development with the collapse of the three-dimensional blastomere structure. Here, we demonstrate the benefits of using a two-step combined ZPR method, which relies upon a customized well-of-well (cWOW) system with smaller well size, on developmental competence and the quality of the zona free (ZF) mouse embryos. We first isolated 2-cell embryos using acid Tyrode's solution and then cultured these embryos using either commercially available or cWOW, which had a smaller microwell size. The rate of blastocyst was significantly increased by use of cWOW when compared to other culture systems. Then we evaluated the use of a two-step ZPR protocol, relying on acid Tyrode's solution and proteinase K, and subsequent culture in the cWOW system. Although acid Tyrode's solution treatment alone reduced ZPR time, blastomere morphology became wrinkled, significant decrease in blastocyst rate associated with increased number of apoptotic cells and increased expression of apoptosis-related genes were observed. Using proteinase K alone increased ZPR time and significantly decreased the blastocyst rate, but did not induce an increase in apoptotic cell number or apoptosis-related gene expression. In contrast, two-step method significantly reduced ZPR time and improved blastocyst rate by increasing the total number of cells in these wells an reducing the number of apoptotic cells in these experiments. These results suggest that the two-step ZPR protocol is beneficial for reducing the toxic effects of zona removal on ZF embryo development and quality when combined with a suitable culture system.


Assuntos
Blastocisto/fisiologia , Blastômeros/fisiologia , Técnicas de Cultura Embrionária/métodos , Desenvolvimento Embrionário/fisiologia , Zona Pelúcida/fisiologia , Animais , Apoptose/genética , Blastocisto/citologia , Blastômeros/citologia , Fragmentação do DNA , Endopeptidase K/metabolismo , Feminino , Marcação In Situ das Extremidades Cortadas/métodos , Soluções Isotônicas/química , Masculino , Camundongos Endogâmicos ICR , Microscopia de Fluorescência/métodos
2.
Biochem Biophys Res Commun ; 569: 179-186, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252590

RESUMO

An early and accurate pregnancy diagnosis method is required to improve the reproductive performance of cows. Here we developed an easy pregnancy detection method using vaginal mucosal membrane (VMM) with application of Reverse Transcription-Loop-mediated Isothermal Amplification (RT-LAMP) and machine learning. Cows underwent artificial insemination (AI) on day 0, followed by VMM-collection on day 17-18, and pregnancy diagnosis by ultrasonography on day 30. By RNA sequencing of VMM samples, three candidate genes for pregnancy markers (ISG15 and IFIT1: up-regulated, MUC16: down-regulated) were selected. Using these genes, we performed RT-LAMP and calculated the rise-up time (RUT), the first-time absorbance exceeded 0.05 in the reaction. We next determined the cutoff value and calculated accuracy, sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) for each marker evaluation. The IFIT1 scored the best performance at 92.5% sensitivity, but specificity was 77.5%, suggesting that it is difficult to eliminate false positives. We then developed a machine learning model trained with RUT of each marker combination to predict pregnancy. The model created with the RUT of IFIT1 and MUC16 combination showed high specificity (86.7%) and sensitivity (93.3%), which were higher compared to IFIT1 alone. In conclusion, using VMM with RT-LAMP and machine learning algorithm can be used for early pregnancy detection before the return of first estrus.


Assuntos
Expressão Gênica , Aprendizado de Máquina , Técnicas de Diagnóstico Molecular/métodos , Mucosa/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Gravidez/genética , Vagina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores/metabolismo , Antígeno Ca-125/genética , Bovinos , Citocinas/genética , Feminino , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ubiquitinas/genética
3.
Biol Reprod ; 105(5): 1114-1125, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34296252

RESUMO

Heat stress adversely affects the reproductive function in cows. Although a relationship between heat stress and oxidative stress has been suggested, it has not been sufficiently verified in bovine endometrial epithelial cells. Here, we investigated whether oxidative stress is induced by heat stress in bovine endometrial epithelial cells under high temperature. Luciferase reporter assays showed that the reporter activity of heat shock element and antioxidant responsive element was increased in endometrial epithelial cells cultured under high temperature compared to that in cells cultured under basal (thermoneutral) temperature. Also, nuclear factor, erythroid 2 like 2 (NFE2L2), a master regulator of cellular environmental stress response, stabilized and the expression levels of antioxidant enzyme genes increased under high temperature. Immunostaining confirmed the nuclear localization of NFE2L2 in endometrial epithelial cells cultured under high temperature. Quantitative polymerase chain reaction analysis showed that the expression levels of representative inflammatory cytokine genes, such as prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin 8, were significantly decreased in endometrial epithelial cells cultured under high temperature compared to those in cells cultured under basal temperature. Thus, our results suggest that heat stress induces oxidative stress, whereas NFE2L2 plays a protective role in bovine endometrial epithelial cells cultured under heat stress conditions.


Assuntos
Elementos de Resposta Antioxidante/genética , Resposta ao Choque Térmico , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Transdução de Sinais , Animais , Bovinos , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
4.
J Reprod Dev ; 65(4): 313-318, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31061297

RESUMO

Calving is a critical but stressful event required for milk production in dairy cows. In the present study, we investigated the immune status of peripheral blood mononuclear cells (PBMCs) isolated from periparturient cows to better understand and, thus, possibly prevent stress during the periparturient period. To evaluate the immune response of PBMCs, we assessed their proliferation with or without a mitogen (concanavalin A, ConA). Blood samples were collected 24 h before and after calving and 1 week after calving. The proliferation of non-treated cells remained unchanged throughout the examination period. The immune response of PBMCs isolated from the cows before calving was relatively low, even after ConA stimulation; however, the immune response of PBMCs collected at both time points after calving was significantly higher than those of non-stimulated controls. Next, we examined the expression patterns of T cell related and inflammatory cytokine genes in PBMCs. We found that the mRNA expression levels of both CD4 and CD8 showed decreasing trends after calving. The expression of the Th1 cell marker gene IFNG also decreased after calving. The mRNA expression level of the inflammatory cytokine gene TNFA increased after parturition. Overall, our results suggest that the PBMC immune response was weakened in cows before delivery and part of the expression of the immune cell-related genes in these cells is altered 24 h before and after calving.


Assuntos
Bovinos/imunologia , Indústria de Laticínios , Lactação/imunologia , Leucócitos Mononucleares/imunologia , Parto/fisiologia , Animais , Feminino , Imunidade Celular , Lactação/fisiologia , Monócitos/imunologia , Parto/imunologia , Período Periparto/imunologia , Gravidez
5.
J Reprod Dev ; 64(6): 495-502, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30298824

RESUMO

Interferon-tau (IFNT), a type I interferon (IFN), is known as pregnancy recognition signaling molecule secreted from the ruminant conceptus during the preimplantation period. Type I IFNs, such as IFN-alpha and IFN-beta, are known to activate cell-death pathways as well as induce apoptosis. In cows, induction of apoptosis with DNA fragmentation is induced by IFNT in cultured bovine endometrial epithelial cells. However, the status of cell-death pathways in the bovine endometrium during the preimplantation period still remains unclear. In the present study, we investigated the different cell-death pathways, including apoptosis, pyroptosis, and autophagy, in uterine tissue obtained from pregnant cows and in vitro cultured endometrial epithelial cells with IFNT stimulation. The expression of CASP7, 8, and FADD (apoptosis-related genes) was significantly higher in pregnant day 18 uterine tissue in comparison to non-pregnant day 18 tissue. The expression of CASP4, 11, and NLRP3 (pyroptosis-related genes) was significantly higher in the pregnant uterus in comparison to non-pregnant uterus. In contrast, autophagy-related genes were not affected by pregnancy. We also investigated the effect of IFNT on the expression of cell-death pathway-related genes, as well as DNA fragmentation in cultured endometrial epithelial cells. Similar to its effects in pregnant uterine tissue, IFNT affected the increase of apoptosis-related (CASP8) and pyroptosis-related genes (CASP11), but did not affect autophagy-related gene expression. IFNT also increased γH2AX-positive cells, which is a marker of DNA fragmentation. These results suggest that apoptosis- and pyroptosis-related genes are induced by IFNT in the pregnant bovine endometrial epithelial cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Interferon Tipo I/farmacologia , Proteínas da Gravidez/farmacologia , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Caspase 7/metabolismo , Caspase 8/metabolismo , Bovinos , Fragmentação do DNA/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Gravidez
6.
J Dairy Sci ; 101(9): 8396-8400, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29935833

RESUMO

In ruminants, IFN-tau (IFNT) is a pregnancy recognition signal secreted by the embryonic trophectoderm before implantation, and it induces the expression of IFN-stimulated genes (ISG) in the uterine endometrium and blood leukocytes. The expression of ISG in blood leukocytes could indicate the presence of a viable conceptus before return of the next estrus; however, expression levels have high variation for confirming pregnancy. We hypothesized that the secreted IFNT in the uterus would affect ISG expression in cervical and vaginal tissues because they are directly adjacent to the uterus. To prove the hypothesis, we investigated the expression of 3 ISG (ISG15, MX1, and MX2) in cervical and vaginal mucosal membranes collected from pregnant (n = 12) and nonpregnant (n = 11) lactating Holstein cows at 17 to 18 d after artificial insemination. Mucosal membrane samples of the cervical canal near the external os (cervix) and deep vaginal wall surrounding the external os (vagina) were collected separately by simply scraping with a curette on d 17 or 18 of pregnancy (d 1 = ovulation), at which time IFNT secretion into the maternal uterus is maximal. After pregnancy diagnosis on d 30 and 60, separately collected samples confirmed as pregnant and nonpregnant were used for evaluation of the expression of IFN-stimulated protein 15 kDa (ISG15) and myxovirus-resistance protein 1 and 2 (MX1, MX2) with quantitative real-time PCR. The collected mucosal membrane samples from cervix contained mostly cell clots showing membrane structure and a low content of blood cells. The expression levels of all 3 genes were significantly increased in pregnant cows compared with nonpregnant cows in both cervical and vaginal samples. These results suggest that increased expression of ISG in the cervix and vagina is a pregnancy-associated phenomenon and is highly affected by IFNT secreted from the conceptus through the uterus.


Assuntos
Bovinos/genética , Bovinos/metabolismo , Interferon Tipo I/metabolismo , Prenhez/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Inseminação Artificial , Lactação , Gravidez , Proteínas da Gravidez , Prenhez/genética , Útero
7.
Reproduction ; 155(6): 515-528, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626104

RESUMO

In ruminants, interferon-tau (IFNT)-mediated expression of interferon-stimulated genes in peripheral blood leukocytes (PBLs) can indicate pregnancy. Recently, type 1 IFN-mediated activation of lysosomes and lysosomal cathepsins (CTSs) was observed in immune cells. This study investigated the status of lysosomal CTSs and lysosomes in PBLs collected from pregnant (P) and non-pregnant (NP) dairy cows, and conducted in vitro IFNT stimulation of NP blood leukocytes. Blood samples were collected 0, 7, 14 and 18 days post-artificial insemination, and the peripheral blood mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs) separated. The fluorescent activity of CTSB and CTSK in PMNs significantly increased with the progress of pregnancy, especially on day 18. In vitro supplementation of IFNT significantly increased the activities of CTSB and CTSK in NP PBMCs and PMNs. CTSB expression was significantly higher in PBMCs and PMNs collected from P day-18 cows than from NP cows, whereas there was no difference in CTSK expression. IFNT increased CTSB expression but did not affect CTSK expression. Immunodetection showed an increase of CTSB in P day-18 PBMCs and PMNs. In vitro stimulation of IFNT increased CTSB in NP PBMCs and PMNs. Lysosomal acidification showed a significant increase in P day-18 PBMCs and PMNs. IFNT also stimulated lysosomal acidification. Expressions of lysosome-associated membrane protein (LAMP) 1 and LAMP2 were significantly higher in P day-18 PBMCs and PMNs. The results suggest that pregnancy-specific activation of lysosomal functions by CTS activation in blood leukocytes is highly associated with IFNT during maternal and fetal recognition of pregnancy.


Assuntos
Catepsina B/metabolismo , Catepsina K/metabolismo , Leucócitos Mononucleares/enzimologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/enzimologia , Animais , Bovinos , Feminino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...